宽调谐范围光栅外腔窄线宽405 nm 蓝紫光半导体激光器研究—中国(2)
发布日期:2021-02-07 21:06:06编辑:音乐人
自由运行的半导体激光器通常为多纵模光谱输出,谱线宽度较大,不能满足拉曼散射等对光源线宽有要求的应用。为得到稳定输出的窄线宽激光,通过使用反射式全息光栅,有效地窄化了405 nm 波段激光二极管的谱线宽度。使用高分辨率单色仪检测了Littrow 布局下光栅外腔半导体激光器的输出光谱,并通过输出功率和光谱特性研究了光栅外腔半导体激光器的阈值和调谐特性。实验发现,通过使用2400 l/mm 和3600 l/mm 刻线密度的反射式全息光栅,激光二极管的阈值电流由30.0 mA 分别下降到19.7 mA 和21.3 mA,谱线宽度也从自由运行时的1 nm 左右下降到0.03 nm 以内,在标称的工作电流范围内得到了窄线宽激光输出,并且分别实现了5.45 nm 和5.33 nm 宽度的波长调谐。这一结果有利于推动蓝紫光激光二极管的光谱应用。
关键词
Abstract
Free-running diode lasers can not satisfy the demands of spectroscopy applications such as Raman scattering which requires narrow line-width. In order to obtain narrow line-width laser at 405 nm band, external cavity with reflective holographic gratings for blue-violet laser diode (LD) is studied. The spectra of the blue-violet LD with a grating external cavity in Littrow configuration are measured by a high resolution monochromator, and the characteristics of threshold and tuning property are investigated through its output power and spectra. It is found that the threshold current of LD is reduced from 30.0 mA to 19.7 mA or 21.3 mA when the groove density of the grating is 2400 l/mm or 3600 l/mm respectively, and the line-width is suppressed within 0.03 nm in the full scope of injection currents while the line-width of the free running LD is approximately 1nm. Furthermore, tuning ranges of 5.45 nm and 5.33 nm are achieved. These results is helpful for the spectroscopy applications of blue-violet LD.
中图分类号:TN248.4
DOI:10.3788/cjl201542.1202003
所属栏目:激光物理
责任编辑:宋梅梅 信息反馈
基金项目:国家重大科学仪器开发专(2012YQ16000702)
收稿日期:2015-06-30
修改稿日期:2015-08-27
网络出版日期:--
作者单位 点击查看
李斌:华中科技大学光学与电子信息学院华中科技大学武汉光电国家实验室, 湖北 武汉 430074
高俊:华中科技大学光学与电子信息学院华中科技大学武汉光电国家实验室, 湖北 武汉 430074
赵俊:华中科技大学光学与电子信息学院华中科技大学武汉光电国家实验室, 湖北 武汉 430074
余安澜:华中科技大学光学与电子信息学院华中科技大学武汉光电国家实验室, 湖北 武汉 430074
王新兵:华中科技大学光学与电子信息学院华中科技大学武汉光电国家实验室, 湖北 武汉 430074
左都罗:华中科技大学光学与电子信息学院华中科技大学武汉光电国家实验室, 湖北 武汉 430074
联系人作者:李斌(libin86211@163.com)
备注:李斌(1987—),男,博士研究生,主要从事气体自发拉曼散射信号增强方法与实验等方面的研究。
【1】H Nasim, Y Jamil. Diode lasers: From laboratory to industry[J]. Optics & Laser Technology, 2014, 56: 211-222.
【2】H Katarzyna, B Zbigniew, W Jacek, et al.. Blue laser diodes for trace matter detection[J]. Opt Appl, 2010, 40(3): 641-651.
【3】H Nasim, Yasir Jamil. Recent advancements in spectroscopy using tunable diode lasers[J]. Laser Physics Letters, 2013, 10(4): 043001.
【4】X T Lou, G Somesfalean, B Chen, et al.. Simultaneous detection of multiple-gas species by correlation spectroscopy using a multimode diode laser[J]. Opt Lett, 2010, 35(11): 1749-1751.
【5】Feng Jiansheng, Yuan Xiao, Xiong Baoxing, et al.. Waveleng stabilization and lingwidth narrowing of laser diode for pumping cs vapor laser[J]. Acta Optica Sinca, 2014, 34(5): 0514001.
封建胜, 袁孝, 熊宝星, 等. 用于抽运铯蒸气激光器的半导体激光器波长稳定与线宽窄化研究[J]. 光学学报, 2014, 34(5): 0514001.
【6】Meng Huicheng, Wu Deyong, Tan Hao, et al.. Experimental study on high brightness and narrow band of diode laser by spectral beam combing of grating-external cavity[J]. Chinese J Lasers, 2015, 42(3): 03020031.
孟慧成, 武德勇, 谭昊, 等. 窄光谱高亮度半导体激光器光栅-外腔光谱合束实验研究[J]. 中国激光, 2015, 42(3): 03020031.
【7】S Ohara, J Sato, M ENDO, et al.. Trace methane detection based on Raman spectroscopy using a high finesse optical resonator[J]. The Review of Laser Engineering, 2004, 32(3): 208-210.
【8】T Tanaka, K Takahashi, K Sako, et al.. Littrow-type external-cavity blue laser for holographic data storage[J]. Appl Opt, 2007, 46(17): 3583-3592.
【9】R S Conroy, J J Hewett, G P T Lancaster, et al.. Characterisation of an extended cavity violet diode laser[J]. Opt Commun, 2000, 175(1): 185-188.
【10】L Hildebrandt, R Knispel, S Stry, et al.. Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy[J]. Appl Opt, 2003, 42(12): 2110-2118.
【11】Lv Xueqin, Chen Shaowei, Zhang Jiangyong, et al.. Tuning properties of external cavity violet semiconductor laser[J]. Chin Phys Lett, 2013, 30(7): 074204.
【12】M Omori, N Mori, N Dejima, et al.. Tunable light source with GaN-based violet laser diode[C]. SPIE, 2013, 8625: A1-A8.