聚类分析原理_灰色聚类分析的原理和步骤
发布日期:2020-03-02 12:26:00编辑:音乐人
灰色聚类分析的原理和步骤
(1)给出聚类白化数:选取n个聚类对象,得到m个聚类指标,构造一个n×m表;(2)将聚类白化数输入计算机,进入灰色聚类分析评价的算法,包括将聚类白化数进行均值化无量纲化处理;确定每个聚类对象各个聚类指标值所属的灰类;采用估值法或插值法求出各个灰类的白化权函数值;标定聚类权灰数矩阵;构造聚类矩阵;(3)根据步骤(2)的结果进行灰色评价。
参考资料: 百度专利搜索找到的
k均值聚类算法原理
算法:
第一步:选K个初始聚类中心,z1(1),z2(1),…,zK(1),其中括号内的序号为寻找聚类中心的迭代运算的次序号。聚类中心的向量值可任意设定,例如可选开始的K个模式样本的向量值作为初始聚类中心。
第二步:逐个将需分类的模式样本{x}按最小距离准则分配给K个聚类中心中的某一个zj(1)。
假设i=j时, ,则 ,其中k为迭代运算的次序号,第一次迭代k=1,Sj表示第j个聚类,其聚类中心为zj。
第三步:计算各个聚类中心的新的向量值,zj(k+1),j=1,2,…,K
求各聚类域中所包含样本的均值向量:
其中Nj为第j个聚类域Sj中所包含的样本个数。以均值向量作为新的聚类中心,可使如下聚类准则函数最小:
在这一步中要分别计算K个聚类中的样本均值向量,所以称之为K-均值算法。
第四步:若 ,j=1,2,…,K,则返回第二步,将模式样本逐个重新分类,重复迭代运算;
若 ,j=1,2,…,K,则算法收敛,计算结束。
灰色定权聚类是什么东西?谢谢
聚类分析法是理想的多变量统计技术,主要有分层聚类法和迭代聚类法。 聚类分析也称群分析、点群分析,是研究分类的一种多元统计方法。
扩展
水泥混凝土和这个聚类分析法有交集吗?
补充
灰色系统论(grey systematology )
参考资料: http://wenku.baidu.com/view/a6c893eae009581b6bd9eb95.html
参考资料: http://baike.baidu.com/view/265812.htm
聚类分析与判别分析如何结合运用?
1.聚类分析与判别分析的区别与联系
都是研究分类的,在进行聚类分析前,对总体到底有几种类型不知道(研究分几类较为合适需从计算中加以调整)。判别分析则是在总体类型划分已知,对当前新样本判断它们属于哪个总体。如我们对研究的多元数据的特征不熟悉,当然要进行聚类分析,才能考虑判别分析问题。
2.聚类分析分两种:Q型聚类(对样本的聚类),P型聚类(对变量的聚类)
聚类分析需要注意的是,一般小样本数据可以用系统聚类法,大样本数据一般用快速聚类法(K均值聚类法)。需要根据统计量判断分几类比较合适,一般用R平方统计、伪F统计量等。如用前者时,可以从R平方的变换看n个样品分成几类比较合适,如分为5类时,R平方为0.9,当分为四类时,其值减小较快,如R平方为0.4,则认为分五类比较合适。另外,不同的分类方法产生的分类结果可能不同,要结合实际情况选出最优的分类方法。
3.判别分析
有Fisher判别,Bayes判别和逐步判别。一般用Fisher判别即可,要考虑概率及误判损失最小的用Bayes判别,但变量较多时,一般先进行逐步判别筛选出有统计意义的变量,再结合实际情况选择用哪种判别方法。