曲谱网 > 知识库 >

导航导航

协方差相关系数_相关系数与协方差有什么关系

发布日期:2020-02-21 07:41:00编辑:音乐人

相关系数与协方差有什么关系

相关系数与协方差的关系:

1、相关系数与协方差一定是在投资组合中出现的,只有组合才有相关系数和协方差。单个资产是没有相关系数和协方差之说的。

2、相关系数和协方差的变动方向是一致的,相关系数的负的,协方差一定是负的。

3、相关系数是变量之间相关程度的指标根据协方差的公式可知,协方差与相关系数的正负号相同,但是协方差是相关系数和两证券的标准差的乘积,所以协方差表示两种证劵之间共同变动的程度。

2、协方差的性质

(1)、Cov(X,Y)=Cov(Y,X);

(2)、Cov(aX,bY)=abCov(X,Y),(a,b是常数);

(3)、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。

由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。

参考资料:百度百科——相关系数



协方差,方差,相关系数

一、首先要明白这2个的定义 1、相关系数是协方差与两个投资方案投资收益标准差之积的比值,其计算公式为:相关系数总是在-1到+1之间的范围内变动,-1代表完全负相关,+1代表完全正相关,0则表示不相关。 2、协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标。其计算公式为:当协方差为正值时,表示两种资产的收益率呈同方向变动;协方差为负值时,表示两种资产的收益率呈反方向变动。二、要辨清两者的关系 1、相关系数与协方差一定是在投资组合中出现的,只有组合才有相关系数和协方差。单个资产是没有相关系数和协方差之说的。 2、相关系数和协方差的变动方向是一致的,相关系数的负的,协方差一定是负的。 3、(1)协方差表示两种证劵之间共同变动的程度:相关系数是变量之间相关程度的指标根据协方差的公式可知,协方差与相关系数的正负号相同,但是协方差是相关系数和两证券的标准差的乘积,所以协方差表示两种证劵之间共同变动的程度。(2)相关系数是变量之间相关程度的指标,相关系数在0到1之间,表示两种报酬率的增长是同向的;相关系数在0到-1之间,表示两种报酬率的增长是反向的,所以说相关系数是变量之间相关程度的指标。总体来说,两项资产收益率的协方差,反映的是收益率之间共同变动的程度;而相关系数反映的是两项资产的收益率之间相对运动的状态。两项资产收益率的协方差等于两项资产的相关系数乘以各自的标准差。

扩展

不好意思,你完全没有回答我的问题

相关系数和协方差所表示的意义有什么区别

二者表示变量间的共变程度,协方差是变量x的离均差乘以y的离均差再求平均得到的统计量,虽然它可以表示x和y的共变程度,但x和y的单位可能不同,这样直接将二者的离均差相乘得到的结果可能偏差很大,因此有必要统一单位,即消去x和y的单位,做法就是给协方差再分别处以x、y各自的标准差,这样得到的统计量就是相关系数
由于相关系数是协方差除以两变量标准差得到的,因此相关系数是一个标准化的变量,而协方差是未标准化变量。

相关系数和协方差所表示的意义有什么不同?

相关系数是用来衡量两个变量的相关程度,比如,随着x的变大,y也随之变大,并且接近某种函数关系,说明相关性好
而协方差是衡量两个变量之间的总体误差的
协方差在描述X和Y在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念:
定义称为随机变量X和Y的相关系数。
定义
若ρXY=0,则称X与Y不相关。
即ρXY=0的充分必要条件是Cov(X,Y)=0,亦即不相关和协方差为零是等价的。

相关系数和协方差所表示的意义有什么区别?应用范围有什么区别?

1、协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标,通俗点就是投资组合中两个项目间收益率的相关程度,正数说明两个项目一个收益率上升,另一个也上升,收益率呈同方向变化。如果是负数,则一个上升另一个下降,表明收益率是反方向变化。协方差的绝对值越大,表示这两种资产收益率关系越密切;绝对值越小表明这两种资产收益率的关系越疏远。 2、由于协方差比较难理解,所以将协方差除以两个投资方案投资收益率的标准差之积,得出一个与协方差具有相同性质却没有量化的数。这个数就是相关系数。计算公式为相关系数=协方差/两个项目标准差之积。

相关系数矩阵和协方差矩阵有什么区别

相关系数矩阵:相当于消除量纲的表示变量间相关性的一个矩阵
协方差矩阵:它是没有消除量纲的表示变量间相关性的矩阵。
你对比下它们的等式变换关系:
r=COV(x,y)/D(x)D(y)

看看我的博客http://blog.csdn.net/yugao1986/article/details/6878578

如何通俗理解“协方差”和“相关系数”

相关系数概念在评价图像的处理效果方面很有用,因为很多时候我们需要只要处理后图像与原图像的关系。

一、协方差:  可以通俗的理解为:两个变量在变化过程中是同方向变化?还是反方向变化?同向或反向程度如何? 

你变大,同时我也变大,说明两个变量是同向变化的,这时协方差就是正的。  

你变大,同时我变小,说明两个变量是反向变化的,这时协方差就是负的。 

从数值来看,协方差的数值越大,两个变量同向程度也就越大。反之亦然。  

咱们从公式出发来理解一下:    公式简单翻译一下是:如果有X,Y两个变量,每个时刻的“X值与其均值之差”乘以“Y值与其均值之差”得到一个乘积,再对这每时刻的乘积求和并求出均值(其实是求“期望”,但就不引申太多新概念了,简单认为就是求均值了)。    

期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:

其中,Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差

方差、协方差与相关系数的关系方程式

随机变量:ξ
0,数学期望:Eξ
1,方差:若E(ξ-Eξ)^2存在,则称 Dξ=E(ξ-Eξ)^2为随机变量ξ的方差;称√Dξ为ξ的标准差。
2,协方差:给定二维随机变量 ξ (ξ1, ξ2),若:E[(ξ1-Eξ1)(ξ2-Eξ2)]存在,则称其为随机变量
(ξ1,ξ2)的协方差,记为:cov(ξ1,ξ2)=E[(ξ1-Eξ1)(ξ2-Eξ2)]
3,记:r(ξ1,ξ2)=cov(ξ1,ξ2)/[Dξ1Dξ2]^0.5
=E[(ξ1-Eξ1)(ξ2-Eξ2)] / [Dξ1Dξ2]^0.5 (Dξ1,Dξ2均大于零)
称:上式为ξ1,ξ2的‘相关系数’或‘标准协方差’。
4,以上可知方差、协方差、相关系数之间的相互关系。

方差、协方差与相关系数的关系方程

随机变量:ξ
0,数学期望:Eξ
1,方差:若E(ξ-Eξ)^2存在,则称 Dξ=E(ξ-Eξ)^2为随机变量ξ的方差;称√Dξ为ξ的标准差。
2,协方差:给定二维随机变量 ξ (ξ1, ξ2),若:E[(ξ1-Eξ1)(ξ2-Eξ2)]存在,则称其为随机变量
(ξ1,ξ2)的协方差,记为:cov(ξ1,ξ2)=E[(ξ1-Eξ1)(ξ2-Eξ2)]
3,记:r(ξ1,ξ2)=cov(ξ1,ξ2)/[Dξ1Dξ2]^0.5
=E[(ξ1-Eξ1)(ξ2-Eξ2)] / [Dξ1Dξ2]^0.5 (Dξ1,Dξ2均大于零)
称:上式为ξ1,ξ2的‘相关系数’或‘标准协方差’。
4,以上可知方差、协方差、相关系数之间的相互关系。

大家都在看

最新资讯

推荐专题

儿童歌曲大全 儿童故事大全 卡农钢琴曲谱 天空之城钢琴曲谱 梦中的婚礼钢琴曲谱 梁祝》钢琴曲谱 童年的回忆钢琴曲谱 彩云追月钢琴曲谱 康定情歌钢琴曲谱 水边的阿狄丽娜钢琴曲谱 渔舟唱晚古筝曲谱 云水禅心古筝曲谱 高山流水古筝曲谱 浏阳河古筝曲谱 南泥湾古筝曲谱 梅花三弄古筝曲谱 笑傲江湖古筝曲谱 青花瓷古筝曲谱 月光下的凤尾竹葫芦丝曲谱 婚誓葫芦丝曲谱 荷塘月色葫芦丝曲谱 映山红葫芦丝简谱 军港之夜葫芦丝简谱 青花瓷葫芦丝简谱 蝴蝶泉边葫芦丝曲谱 美丽的神话葫芦丝曲谱 致爱丽丝电子琴谱 小苹果 电子琴谱 天空之城 电子琴谱 婚礼进行曲 电子琴谱 茉莉花 电子琴谱 红河谷曲谱