曲谱网 > 知识库 >

导航导航

三角形勾股定理公式

发布日期:2020-01-26 17:44:00编辑:音乐人

曲谱自学网今天精心准备的是《三角形勾股定理公式》,下面是详解!

三角形用勾股定理怎么计算

勾股定理仅适用于直角三角形。勾股定理表达式:a²+b²=c²

勾股定理的公式是:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和.如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方。

扩展资料:

勾股数组

勾股数组是满足勾股定理  的正整数组  ,其中的  称为勾股数。例如  就是一组勾股数组。任意一组勾股数  

可以表示为如下形式:  ,  ,  ,其中  均为正整数,且  。

定理用途

已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。

参考资料:百度百科——勾股定理

三角形勾股定理怎么算 要详细过程

三角形的勾股定理可以通过公式a²+b²=c²来计算。勾股定理的定义为:直角三角形的两条直角边的平方和等于斜边的平方。即勾股定理的表达式为A²+B²=C²,或者也可以写为C=√(A²+B²)。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理。

使用勾股定理解决三角形计算的问题方法如下:例如直角三角形 的三条边是3(直角边)、4(直角边)、5(斜边)则3²+4²=5²,可得5=√(3²+4²)=√5²=5。三角形勾股定理的推论,勾股数组是满足勾股定理的正整数组,其中的称为勾股数。

扩展资料

勾股定理的证明方法:

在直角梯形ABDE中,∠AEC=∠CDB=90°,△AEC≌△CDB,


参考资料:百度百科—勾股定理

勾股定理公式计算图解

勾股定理公式计算图解...

勾股定理公式计算图解

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:

勾股定理是余弦定理中的一个特例。

扩展资料:

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

定理用途:

已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。

参考资料:勾股定理-百度百科

勾股定理怎么算。是什么公式

勾股定理计算:直角三角形的两条直角边的平方和等于斜边的平方。a²+b²=c²。

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

扩展资料:

勾股定理意义

1、勾股定理的证明是论证几何的发端; 

2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;

3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解; 

4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理; 

5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用.1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。 

参考资料来源:百度百科-赵爽弦图

参考资料来源:百度百科-勾股定理

勾股定理怎么计算?

勾股定理,直角三角形的两条直角边的平方和等于斜边的平方.

A²+B²=C²

C=√(A²+B²)

√(120²+90²)=√22500=√150²=150

例如直角三角形 的三条边是3(直角边)、4(直角边)、5(斜边)

3²+4²=5²

5=√(3²+4²)=√5²=5

扩展资料

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

参考资料勾股定理_百度百科

勾股定理的公式

勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c² 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。

勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a²+b²=c²这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。”常见勾股数有(3,4,5)(5,12,13)(6,8,10)。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

勾股定理的公式:

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是 和 ,斜边长度是  ,那么可以用数学语言表达:

勾股定理是余弦定理中的一个特例。

什么是勾股定理,计算公式是什么?

勾股定理是一个基本几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。

文字描述:直角三角形两条直角边的平方和等于斜边的平方。

字母表示:若一个三角形是直角三角形,a、b分别是三角形的两条直角边,c为斜边,则:a²+b²=c²。

参考资料:http://baike.baidu.com/link?url=d6MNyAbCGxpdtqu_is3cNVOyTkpssviNZ-8cM6iKnDfWNVJLfQjWCQ1xgqbDjSkj

望~

勾股定理怎么算,举个例题,公式是什么。

勾股定理怎么算,举个例题,公式是什么。勾股定理怎么算的,举个栗子。在古建筑和建筑能不能实际运用到。知道斜边的长或者例外一边的长能不能算出他的面积...

勾股定理怎么算,举个例题,公式是什么。勾股定理怎么算的,举个栗子。
在古建筑和建筑能不能实际运用到。
知道斜边的长或者例外一边的长能不能算出他的面积

勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。

A²+B²=C²

C=√(A²+B²)

√(120²+90²)=√22500=√150²=150

例如直角三角形 的三条边是3(直角边)、4(直角边)、5(斜边)

3²+4²=5²

5=√(3²+4²)=√5²=5

扩展资料:

定理用途

已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。

1、勾股定理的证明是论证几何的发端; 

2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;  

3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解; 

4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理; 

5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

参考资料来源:百度百科-勾股定理

勾股定理的公式是什么?

勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c² 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。

勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a²+b²=c²这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。”常见勾股数有(3,4,5)(5,12,13)(6,8,10)。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

勾股定理的公式:

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是 和 ,斜边长度是  ,那么可以用数学语言表达:

勾股定理是余弦定理中的一个特例。

直角三角形边长计算公式

直角三角形边长计算公式应该怎么计算边长,...

直角三角形边长计算公式应该怎么计算边长,

应用勾股定理:斜边平方=两直角边平方之和

例如,对于任意一直角三角形而言,设两直角边长度分别为a和b,斜边长为c,则根据勾股定理可得到公式:a²+b²=c²

对于题中的直角三角形来说,利用勾股定理可得:斜边=√(2.36²+1.2²)=√7.0096≈2.648

扩展资料

中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

参考资料百度百科-勾股定理

三角形(几何图形)

三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。 常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

大家都在看

最新资讯

推荐专题

儿童歌曲大全 儿童故事大全 卡农钢琴曲谱 天空之城钢琴曲谱 梦中的婚礼钢琴曲谱 梁祝》钢琴曲谱 童年的回忆钢琴曲谱 彩云追月钢琴曲谱 康定情歌钢琴曲谱 水边的阿狄丽娜钢琴曲谱 渔舟唱晚古筝曲谱 云水禅心古筝曲谱 高山流水古筝曲谱 浏阳河古筝曲谱 南泥湾古筝曲谱 梅花三弄古筝曲谱 笑傲江湖古筝曲谱 青花瓷古筝曲谱 月光下的凤尾竹葫芦丝曲谱 婚誓葫芦丝曲谱 荷塘月色葫芦丝曲谱 映山红葫芦丝简谱 军港之夜葫芦丝简谱 青花瓷葫芦丝简谱 蝴蝶泉边葫芦丝曲谱 美丽的神话葫芦丝曲谱 致爱丽丝电子琴谱 小苹果 电子琴谱 天空之城 电子琴谱 婚礼进行曲 电子琴谱 茉莉花 电子琴谱 红河谷曲谱