曲谱网 > 知识库 >

导航导航

等差等比数列公式大全

发布日期:2020-01-25 22:04:00编辑:音乐人

曲谱自学网今天精心准备的是《等差等比数列公式大全》,下面是详解!

高一数学必修5 等差数列和等比数列 的所有公式

你好,我也是修过必修五这门课的数学,下面是等差和等比所有公式:
希望对你有帮助:
.
等差数列公式an=a1+(n-1)d
 前n项和公式为:Sn=na1+n(n-1)d/2
  Sn=(a1+an)n/2  
 若m+n=p+q则:存在am+an=ap+aq  
 若m+n=2p则:am+an=2ap

(1)等比数列的通项公式是:An=A1×q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,
则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。  
(2) 任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
(5) 等比求和:Sn=a1+a2+a3+.......+an  
①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)   ②当q=1时, Sn=n×a1(q=1)  
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
祝你学习进步!但愿对你有所帮助!!!!

等比与等差数列前N项和公式?

1、等比数列求和公式:

2、等差数列求和公式:

若一个等差数列的首项为  ,末项为  那么该等差数列和表达式为:

即(首项+末项)×项数÷2。

扩展资料

等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。

等比数列的定义式:

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

参考资料:百度百科-等比数列  百度百科-等差数列

求数列通项公式的方法大全

不要复制的...

不要复制的

构造法求数列的通项公式

在数列求通项的有关问题中,经常遇到即非等差数列,又非等比数列的求通项问题,特别是给出的数列相邻两项是线性关系的题型,在老教材中,可以通过不完全归纳法进行归纳、猜想,然后借助于数学归纳法予以证明,但新教材中,由于删除了数学归纳法,因而我们遇到这类问题,就要避免用数学归纳法。这里我向大家介绍一种解题方法——构造等比数列或等差数列求通项公式。

构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉. 供参考。

1、构造等差数列或等比数列

由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.

例1 设各项均为正数的数列 的前n项和为Sn,对于任意正整数n,都有等式: 成立,求 的通项an.

解: , ∴

,∵ ,∴ .

即 是以2为公差的等差数列,且 .



例2 数列 中前n项的和 ,求数列的通项公式 .

解:∵

当n≥2时,

令 ,则 ,且

是以 为公比的等比数列,

∴ .

2、构造差式与和式

解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式.

例3 设 是首项为1的正项数列,且 ,(n∈N*),求数列的通项公式an.

解:由题设得 .

∵ , ,∴ .



.

例4 数列 中, ,且 ,(n∈N*),求通项公式an.

解:∵

∴ (n∈N*)

3、构造商式与积式

构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法.

例5 数列 中, ,前n项的和 ,求 .

解:







4、构造对数式或倒数式

有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.

例6 设正项数列 满足 , (n≥2).求数列 的通项公式.

解:两边取对数得: , ,设 ,则

是以2为公比的等比数列, .

, , ,



例7 已知数列 中, ,n≥2时 ,求通项公式.

解:∵ ,两边取倒数得 .

可化为等差数列关系式.

等比数列和等差数列公式

1、等比数列通项公式、求和公式:

2、等差数列通项公式、求和公式:

扩展资料

等比数列性质:

(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。

(2)在等比数列中,依次每k项之和仍成等比数列。

(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。

(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。

等差数列性质:

(1)在等差数列中,S = a,S = b (n>m),则S = (a-b)。

(2)在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。

等差和等比所有公式!

一、 等差数列

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。



且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

和=(首项+末项)*项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
项数=(末项-首项)/公差+1
等差数列的应用:
日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级。
若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q)。
若为等差数列,且有an=m,am=n.则a(m+n)=0。

等比数列:

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
(1)等比数列的通项公式是:An=A1*q^(n-1)
(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)若m,n,p,q∈N*,则有:ap·aq=am·an,
等比中项:aq·ap=2ar ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:
①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。

等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息赫本金价在一起算作本金,
在计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金*(1+利率)存期

等差等比数列以及相关公式

尽量详细,拜托了...

尽量详细,拜托了

等差数列求和公式
Sn=n(a1+an)/2 或Sn=[2na1+n(n-1)d]/2 注:an=a1+(n-1)d
转换过程:Sn=n(a1+an)/2=n{a1+[a1+(n-1)d]}/2=n[2a1+(n-1)d]/2=[2na1+n(n-1)d]/2
应该是对于任一N均成立吧(一定),那么Sn-S(n-1)=[n(a1+an)-(n-1)(a1+a(n-1))]/2=[a1+n*an-(n-1)*a(n-1)]/2=an
化简得(n-1)a(n-1)-(n-2)an=a1,这对于任一N均成立
当n取n-1时式子变为,(n-3)a(n-1)-(n-2)a(n-2)=a1=(n-2)an-(n-1)a(n-1)

2(n-2)a(n-1)=(n-2)*(an+a(n-2))
当n大于2时得2a(n-1)=an+a(n-2)显然证得他是等差数列
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
性质:
若 m、n、p、q∈N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq

等比数列求和公式

(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1);
推广式: an=am×q^(n-m);
(3) 求和公式:Sn=n*a1 (q=1)
Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)
(n为比值,a为项数)
(4)性质:
①若 m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
③若m、n、q∈N,且m+n=2q,则am*an=aq^2
(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".
(6)在等比数列中,首项a1与公比q都不为零.
注意:上述公式中an表示等比数列的第n项。

求等差等比数列通项公式的常用方法

试题分析...

试题分析

(1)观察归纳法
这个方法需要学生很强的反应能力!
比如 21,203,2005,20007```这个你能很快看出来吗 ?
(2)累差法和累商法(我们书本教材上叫做迭加和迭乘,具体书本上有我就不多说了)
形如:已知a1,且a(n+1)-an=f(n)
已知a1,且a(n+1)/an=f(n)
(3)构造法
这个方法最难,不过把握技巧后无论什么题目都是迎刃而解
形如:已知a1,a(n+1)=pan+q的形式就可构造,即配成a(n+1)+x=p(an+x) 当然中间减号也是一样!
例题,数列满足a1=1,a(n+1)=1/2 an+1
解:设a(n+1)+A=1/2(an+A) 然后一零待定系数放,这个展开各项都应等于原题的各项就可以求出了!
(4)公式法
这个方法不用多讲了!两个公式,等差,等比!不用题目往往不会考你那么简单,经常都设置个陷阱,可能是 n=1常常没考虑进去!所以做题时应慎之!

等差等比数列在一起用什么方法求求和公式

利用错项相减法

例如题目为“an=n,bn=2^n求an/bn的前n项和”

利用错项相减法,
Sn=1/2^1+2/2^2+3/2^3+.+n/2^n ①
1/2Sn=1/2^2+2/2^3+3/2^4+.+n/2^(n+1) ②
①-②得 1/2Sn=(1/2^1+1/2^2+1/2^3+.+1/2^n)-n/2^(n+1)
=1/2(1-1/2^n)/(1-1/2)-n/2^(n+1)
=1-1/2^n-n/2^(n+1)
所以Sn=2-1/2^(n-1)-n/2^n.

等差等比数列前N项和公式是??

等差数列和公式
Sn=n(a1+an)/2=na1+n(n-1)/2 d
等比数列求和公式
q≠1时 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
q=1时Sn=na1
(a1为首项,an为第n项,d为公差,q 为等比)

等差等比混合数列的通项公式怎么求?

例如某国入口年增长1.2%,每年外来移民60000人,一开始有1000万人,求入口数列通项公式...

例如某国入口年增长1.2%,每年外来移民60000人,一开始有1000万人,求入口数列通项公式

等差数列的总和:(首项+末项)x公差 除以 2
等差数列通项:第几项=首项+(项数-1)x公差

等比数列例题:
原题:一个等比数列{an}中,a1+a4=133,a2+a3=70,求这个数列的通项公式.
a1+a4=a1(1+q^3)=133,a2+a3=a1(q+q^2)=70
所以a1(1+q^3)/a1(q+q^2)=(1+q^3)/(q+q^2)=133/70=19/10
所以10+10q^3=19q+19q^2
所以q=-1或者q=5/2或者q=2/5
当q=-1的时候,a2+a3=a1+a4=0,不符题意,舍去
当q=5/2的时候,a1=133/(1+125/8)=8,所以通项公式是an=8×(5/2)^(n-1)
当q=2/5的时候,a1=133/(1+8/125)=125,所以通项公式是an=125×(2/5)^(n-1)

大家都在看

最新资讯

推荐专题

儿童歌曲大全 儿童故事大全 卡农钢琴曲谱 天空之城钢琴曲谱 梦中的婚礼钢琴曲谱 梁祝》钢琴曲谱 童年的回忆钢琴曲谱 彩云追月钢琴曲谱 康定情歌钢琴曲谱 水边的阿狄丽娜钢琴曲谱 渔舟唱晚古筝曲谱 云水禅心古筝曲谱 高山流水古筝曲谱 浏阳河古筝曲谱 南泥湾古筝曲谱 梅花三弄古筝曲谱 笑傲江湖古筝曲谱 青花瓷古筝曲谱 月光下的凤尾竹葫芦丝曲谱 婚誓葫芦丝曲谱 荷塘月色葫芦丝曲谱 映山红葫芦丝简谱 军港之夜葫芦丝简谱 青花瓷葫芦丝简谱 蝴蝶泉边葫芦丝曲谱 美丽的神话葫芦丝曲谱 致爱丽丝电子琴谱 小苹果 电子琴谱 天空之城 电子琴谱 婚礼进行曲 电子琴谱 茉莉花 电子琴谱 红河谷曲谱