曲谱网 > 知识库 >

导航导航

弯矩计算公式一览表

发布日期:2019-12-10 19:59:00编辑:音乐人

曲谱自学网今天精心准备的是《弯矩计算公式一览表》,下面是详解!

弯矩计算公式

如图:要求计算最大弯矩和最大挠度,在线等待,高倍悬赏!...

如图:要求计算最大弯矩和最大挠度,在线等待,高倍悬赏!

如图所示:

扩展

大哥你好,能否请你帮我算一下450a的工字钢,在这种情况下的挠度满足要求不?
I450a工字钢纵梁:
截面参数:E=2.1×105Mpa,
I=806000px4, W=35750px3,
S*=20910px3, t=11.5mm,

补充

我已经给出《最大挠度》的公式给你了。就是最后红线框里面那个:f max=……难道你不识?
你把E I 的数据代进去,就可以求出来了。你大哥——我,83岁了。头昏眼花手抖,实在抱歉啊!

求各种梁的弯矩计算公式(高分)

没带工具书,求各种梁的弯矩计算公式,带说明,谢谢,回答好了再加分...

没带工具书,求各种梁的弯矩计算公式,带说明,谢谢,回答好了再加分

弯曲变形:杆件在垂直于其轴线的载荷作用下,使原为直线的轴线变为曲线的变形。

梁Beam——以弯曲变形为主的直杆称为直梁,简称梁。

弯曲bending

平面弯曲plane bending

7.1.2梁的计算简图

载荷:

(1)集中力 concentrated loads

(2)集中力偶 force-couple

(3)分布载荷 distributed loads

7.1.3梁的类型

(1)简支梁simple supported beam 上图

(2)外伸梁overhanging beam

(3)悬臂梁cantilever beam

7.2 梁弯曲时的内力

7.2.1梁弯曲时横截面上的内力——剪力shearing force和弯矩bending moment

问题:

任截面处有何内力?

该内力正负如何规定?

例7-1 图示的悬臂梁 AB ,长为 l ,受均布载荷 q 的作用,求梁各横截面上的内力。

求内力的方法——截面法

截面法的核心——截开、代替、平衡

内力与外力平衡

解:为了显示任一横截面上的内力,假想在距梁的左端为x处沿m-m截面将梁切开 。

梁发生弯曲变形时,横截面上同时存在着两种内力。

剪力 —— 作用线切于截面、通过截面形心并在纵向对称面内。

弯矩 —— 位于纵向对称面内。

剪切弯曲 —— 横截面上既有剪力又有弯矩的弯曲。

纯弯曲 —— 梁的横截面上只有弯矩而没有剪力。

工程上一般梁(跨度 L 与横截面高度 h 之比 L/h >5),其剪力对强度和刚度的影响很小,可忽略不计,故只需考虑弯矩的影响而近似地作为纯弯曲处理。

规定:使梁弯曲成上凹下凸的形状时,则弯矩为正;反之使梁弯曲成下凹上凸形状时,弯矩为负。

7.2.2弯矩图bending moment diagrams

弯矩图:以与梁轴线平行的坐标x表示横截面位置,纵坐标y按一定比例表示各截面上相应弯矩的大小。

例7-2 试作出例7-1中悬臂梁的弯矩图。

解 (1)建立弯矩方程 由例7-1知弯矩方程为

(2)画弯矩图

弯矩方程为一元二次方程,其图象为抛物线。求出其极值点相连便可近似作出其弯矩图。

例7-3 图示的简支梁 AB ,在C点处受到集中力 F 作用,尺寸 a 、 b 和 l 均为已知,试作出梁的弯矩图。

解 (1)求约束反力

(2)建立弯矩方程 上例中梁受连续均布载荷作用,各横截面上的弯矩为x的一个连续函数,故弯矩可用一个方程来表达,而本例在梁的C点处有集中力F作用,所以梁应分成AC和BC两段分别建立弯矩方程。

例7-4 图示的简支梁 AB ,在C点处受到集中力偶 M 0 作用,尺寸 a 、 b 和 l 均为已知,试作出梁的弯矩图。

解 (1)求约束反力

(2)建立弯矩方程 由于梁在C点处有集中力偶M作用,所以梁应分AC和BC两段分别建立弯矩方程。

(3)画弯矩图

两个弯矩方程均为直线方程

总结上面例题,可以得到作弯矩图的几点规律:

(1)梁受集中力或集中力偶作用时,弯矩图为直线,并且在集中力作用处,弯矩发生转折;在集中力偶作用处,弯矩发生突变,突变量为集中力偶的大小 。

(2)梁受到均布载荷作用时,弯矩图为抛物线,且抛物线的开口方向与均布载荷的方向一致 。

(3)梁的两端点若无集中力偶作用,则端点处的弯矩为0;若有集中力偶作用时,则弯矩为集中力偶的大小。

7.3 梁纯弯曲时的强度条件

7.3.1梁纯弯曲(pure bending)的概念Concepts

纯弯曲 —— 梁的横截面上只有弯矩而没有剪力。

Q = 0,M = 常数。

7.3.2梁纯弯曲时横截面上的正应力 Normal Stresses in Beams

1.梁纯弯曲时的 变形特点 Geometry of Deformation:

平面假设:

1)变形前为平面变形后仍为平面

2)始终垂直与轴线

中性层 Neutral Surface :既不缩短也不伸长(不受压不受拉)。

中性层是梁上拉伸区与压缩区的分界面。

中性轴 Neutral Axis :中性层与横截面的交线。

变形时横截面是绕中性轴旋转的。

2.梁纯弯曲时横截面上正应力的分布规律

纯弯曲时梁横截面上只有正应力而无切应力。

由于梁横截面保持平面,所以沿横截面高度方向纵向纤维从缩短到伸长是线性变化的,因此横截面上的正应力沿横截面高度方向也是线性分布的。

以中性轴为界,凹边是压应力,使梁缩短,凸边是拉应力,使梁伸长,横截面上同一高度各点的正应力相等,距中性轴最远点有最大拉应力和最大压应力,中性轴上各点正应力为零 。

3.梁纯弯曲时正应力计算公式

在弹性范围内,经推导可得梁纯弯曲时横截面上任意一点的正应力为

式中, M 为作用在该截面上的弯矩( Nmm ); y 为计算点到中性轴的距离( mm ); Iz Moment of Area about Z-axis 为横截面对中性轴z的惯性矩( mm 4 )。

在中性轴上 y = 0 ,所以 s = 0 ;当 y = y max 时, s = s max 。

最大正应力产生在离中性轴最远的边缘处,

Wz横截面对中性轴 z 的抗弯截面模量( mm 3 )

计算时, M 和 y 均以绝对值代入,至于弯曲正应力是拉应力还是压应力,则由欲求应力的点处于受拉侧还是受压侧来判断。受拉侧的弯曲正应力为正,受压侧的为负。

弯曲正应力计算式虽然是在纯弯曲的情况下导出的,但对于剪切弯曲的梁,只要其跨度 L 与横截面高度 h 之比 L/h >5,仍可运用这些公式计算弯曲正应力。

7.3.3惯性矩和抗弯截面模量

简单截面的惯性矩和抗弯截面模量计算公式

7. 3.4梁纯弯曲时的强度条件

对于等截面梁,弯矩最大的截面就是危险截面,其上、下边缘各点的弯曲正应力即为最大工作应力,具有最大工作应力的点一般称为 危险点 。

梁的弯曲强度条件是 : 梁内危险点的工作应力不超过材料的许用应力。

运用梁的弯曲强度条件,可对梁进行强度校核、设计截面和确定许可载荷。

7.4 提高梁强度的主要措施

提高梁强度的主要措施是:

1)降低弯矩 M 的数值 2)增大抗弯截面模量 W z 的数值

7.4.1降低最大弯矩 M max 数值的措施

1.合理安排梁的支承

2.合理布置载荷

7.4.2合理选择梁的截面

1.形状和面积相同的截面,采用不同的放置方式,则 Wz 值可能不相同

2.面积相等而形状不同的截面,其抗弯截面模量 Wz 值不相同

3.截面形状应与材料特性相适应

7.4.3采用等强度梁

对于等截面梁,除 M max 所在截面的最大正应力达到材料的许用应力外,其余截面的应力均小于,甚至远小于许用应力。

为了节省材料,减轻结构的重量,可在弯矩较小处采用较小的截面,这种截面尺寸沿梁轴线变化的梁称为变截面梁。

等强度梁 ——使变截面梁每个截面上的最大正应力都等于材料的许用应力,则这种梁称之。《建筑桩基技术规范》按梁上荷载分布将承台梁分为4种情况(图1)。内力计算根据荷载情况分跨中和支座分别计算见表1。
在表1的公式(1)~(7)中
p0——线荷载的最大值(kN/m),p0=
a0——自桩边算起的三角形荷载的底边长度;
LC——计算跨度,LC=1.05L;
L——两相邻桩之间的净距;
q——承台梁底面以上的均布荷载。

表1 墙下条形桩基连续承台梁内力计算公式

内力 计算简图编号 内 力 计 算 公 式
支座
弯矩 (a)、(b)、(c)
(1)

(d) M=- (2)

跨中
弯矩 (a)、(c) M= (3)

(b)
(4)

(d)
M= (5)

最大
剪力 (a)、(b)、(c)
Q= (6)

(d)
Q= (7)

图1 计算简图

a0按下式计算:
中间跨 (8)

边 跨 (9)
其中 EC——承台梁砼弹性模量;
EK——墙体的弹性模量;
I——承台梁横截面的惯性矩;
bK——墙体宽度。
当承台梁为矩形截面时,I=bh3
则: 中间跨 a0=1.37h (10)

边 跨 a0=1.05h (11)
其中 b、h——分别为承台梁的宽度和高度。
表1中弯矩公式共5个,公式中荷载取值也不统一,式(1)、(3)、(4)采用P0,式(2)、(5)采用q,这也给计算带来了不便。下面分别对跨中和支座弯矩进行分析。
(1)跨中弯矩 从计算简图可看出,(d)图是(b)图所示受力情况的特例,当a0≥LC时,取a0=LC代入式(4)即可得式(5)。当a0<时,跨中弯矩采用式(3),a0≥时,采用式(4)。
令β=,并将P0==代入式(3)和式(4)
得: M=β2qL2C (13)
(14)
将上两式统一表示为:

M=A0qL2C (15)

式(15)即为跨中弯矩计算公式,它适用于图(a)~(d)所示的四种受力简图。
(2)支座弯矩 图(a)、(c)、(d)均为图(b)所示受力情况的特例,式(1)为支座弯矩计算通式。
将β=和P0==代入式(1)
得 M=β(2-β) (16)
或 M=B0qL2C (17)
(3)弯矩系数A0、B0
跨中弯矩 M=A0qL2C (15)
支座弯矩 M=B0qL2C (17)
其中 A0、B0——弯矩系数,分别为:
β=≤0.5,A0=β2
β>0.5时,A0=β
B0=-β(2-β)
A0、B0皆为β的单值函数,为简化计算,将其列表(表2)。

表2 墙下条形桩基连续承台梁内力系数

β 内 力 系 数 β 内 力 系 数
A0 B0 A0 B0
0.10 0.00083 -0.01583 0.56 0.02590 -0.06720
0.12 0.00120 -0.01880 0.58 0.02753 -0.06863
0.14 0.00163 -0.02170 0.60 0.02907 -0.07000
0.16 0.00213 -0.02453 0.62 0.03053 -0.07130
0.18 0.00270 -0.02730 0.64 0.03190 -0.07253
0.20 0.003331 -0.03000 0.66 0.03317 -0.07370
0.22 0.00403 -0.03263 0.68 0.03433 -0.07480
0.24 0.00480 -0.03520 0.70 0.03539 -0.07583
0.26 0.00563 -0.03770 0.72 0.03635 -0.07680
0.28 0.00653 -0.04013 0.74 0.03722 -0.07770
0.30 0.00750 -0.04250 0.76 0.03799 -0.07853
0.32 0.00853 -0.04480 0.78 0.03867 -0.07930
0.34 0.00963 -0.04703 0.80 0.03927 -0.08000
0.36 0.01080 -0.04920 0.82 0.03979 -0.08063
0.38 0.01203 -0.05130 0.84 0.04023 -0.08120
0.40 0.01333 -0.05333 0.86 0.04061 -0.08170
0.42 0.01470 -0.05530 0.88 0.04091 -0.08213
0.44 0.01613 -0.05720 0.90 0.04116 -0.08250
0.46 0.01763 -0.05903 0.92 0.04136 -0.08280
0.48 0.01920 -0.06080 0.94 0.04150 -0.08303
0.50 0.02083 -0.06250 0.96 0.04159 -0.08320
0.52 0.02252 -0.06413 0.98 0.04165 -0.08330
0.54 0.02423 -0.06570 1.00 0.04167 -0.08333

式(15)和式(17)代替规范的5个公式,公式形式统一,且不需计算P0,直接采用均布荷载,结合内力系数表,设计计算十分简便。剪力计算公式较简单,仍采用原公式。

3 算例(文献〔3〕)

五层混合结构房屋,砖墙承重,内墙厚240mm,外墙厚370mm。基础采用直径320mm,长6m的钻孔灌注桩。钢筋砼承台梁,梁高300mm,梁宽:外墙400mm;内墙350mm。承台梁底面以上荷载为:横墙q=142.9kN/m;外纵墙q=85.0kN/m。试计算外纵墙和内横墙墙下承台梁的内力(图2)。

图2 单元桩基平面图

解:
1.外纵墙下承台梁
承台梁采用C20砼,I级钢筋,墙体采用MU7.5砖、M5混合砂浆。
EC=2.55×104N/mm2
EK=1500f
=1500×1.37
=2055N/mm2
(f——墙体抗压强度设计值)
LC=1.05L=1.05(1.65-0.32)
=1.40m<1.65m
承台梁尺寸400mm×300mm
(1)中间跨
a0=1.37h
=1.37×300=977mm
β===0.698
查表2,得:A0=0.03536
B0=-0.07581
则:跨中弯矩
M=A0qL2C=0.03536×85×14002
=5.89×106N.mm
支座弯矩
M=B0qL2C=-0.07581×85×14002
=-12.63×106N.mm
(2)边跨
a0=1.05h
=1.05×300=747mm
β===0.534
查表2,得:A0=0.02372
B0=-0.06525
则:跨中弯矩
M=A0qL2C=0.02372×85×14002
=3.95×106N.mm
梁端支座弯矩 MA=0
第二支座
MB=B0qL2C=-0.06525×85×14002
=-10.9×106N.mm

图3 纵墙承台梁计算简图

2.横墙下承台梁(近似按中跨计算)
承台梁尺寸350mm×300mm
LC=1.05L=1.05(1.2-0.32)
=0.92m<1.2m
a0=1.37h=1.37×300=1079mm
β=>1.0 取β=1.0
查表2,得:A0=0.04167
B0=-0.08333
跨中弯矩
M=A0qL2C=0.04167×142.9×9202
=5.0×106N.mm
支座弯矩
M=B0qL2C=-0.08333×142.9×9202
=-10.1×106N.mm
剪力计算较简单,略。

4 结语

通过上述分析与计算可以看出,本文提出的计算方法较《建筑桩基技术规范》(JGJ94—94)法形式简捷,计算简便,是一个实用的方法。

图4 横墙承台梁计算简图

参考资料: http://www.wanfangdata.com.cn/qikan/periodical.articles/scjzkxyj/scjz99/scjz9902/990212.htm

简支梁最大弯矩计算公式

设:梁长L;均布荷载Q;跨中最大弯矩M。


取跨中为平衡点,此时有:


支座反力:大小为QL/2,方向向上(为正),作用点距离L/2。


半跨均布荷载:大小QL/2,方向向下(为负),作用点距离L/4。取矩则有:


M=QL/2*L/2(支座反力作用)-QL/2*L/4(半跨均布荷载作用)=1/8*QL2。

相关情况介绍:

1、简支梁,即指梁的两端搁置在支座上,支座仅约束梁的垂直位移,梁端可自由转动。为使整个梁不产生水平移动,在一端加设水平约束,该处的支座称为铰支座,另一端不加水平约束的支座称为滚动支座。

2、简支梁就是两端支座仅提供竖向约束,而不提供转角约束的支撑结构。简支梁仅在两端受铰支座约束,主要承受正弯矩,一般为静定结构。体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力,受力简单,简支梁为力学简化模型。

各类梁反力剪力弯矩挠度计算公式一览表是出自哪本书

各类梁反力剪力弯矩挠度计算公式一览表是出自哪本书...

各类梁反力剪力弯矩挠度计算公式一览表是出自哪本书

简支梁最大弯矩计算公式是什么?

设:梁长L;均布荷载Q;跨中最大弯矩M。

取跨中为平衡点,此时有:

支座反力:大小为QL/2,方向向上(为正),作用点距离L/2。

半跨均布荷载:大小QL/2,方向向下(为负),作用点距离L/4。取矩则有:M=QL/2*L/2(支座反力作用)-QL/2*L/4(半跨均布荷载作用)=1/8*QL2。

简支梁就是两端支座仅提供竖向约束,而不提供转角约束的支撑结构。简支梁仅在两端受铰支座约束,主要承受正弯矩,一般为静定结构。

体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力,受力简单,简支梁为力学简化模型。

扩展资料:

只有两端支撑在柱子上的梁,主要承受正弯矩,一般为静定结构。体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力,受力简单,简支梁为力学简化模型。

弯矩是受力构件截面上的内力矩的一种,即垂直于横截面的内力系的合力偶矩。其大小为该截面截取的构件部分上所有外力对该截面形心矩的代数和,其正负约定为是构件下凹为正,上凸为负(正负区分标准是构件上部受压为正,下部受压为负;反之构件上部受拉为负,下部受拉为正。

在列弯矩计算时,应用“左上右下为正,左下右上为负”的判别方法。凡截面左侧梁上外力对截面形心之矩为顺时针转向,或截面右侧外力对截面形心之矩为逆时针转向,都将产生正的弯矩,故均取正号;反之为负,即左顺右逆,弯矩为正。

参考资料来源:百度百科--简支梁

钢管弯矩计算公式

做一个平衡梁,上部两个垂直吊点,下部一个吊点,在平衡梁中心,吊装重物20吨,由此计算载荷!...

做一个平衡梁,上部两个垂直吊点,下部一个吊点,在平衡梁中心,吊装重物20吨,由此计算载荷!

弯矩公式:


(Mmax表示最大弯矩,F表示外力,L即为力臂)。

弯矩为受力构件截面上的内力矩的一种,即垂直于横截面的内力系的合力偶矩。其大小为该截面截取的构件部分上所有外力对该截面形心矩的代数和,其正负约定为是构件下凹为正,上凸为负。

正负区分标准是构件上部受压为正,下部受压为负;反之构件上部受拉为负,下部受拉为正。在土木工程中,弯矩图习惯绘于杆件受拉一侧,在图上可不注明正负号。

扩展资料

弯矩图的绘制主要有两个关键点:一是要准确画出曲线的形状,即确定弯矩图的图形特征:二是确定曲线的位置,即在已知曲线的形状、大小之后确定平面曲线的位置,这就要求先确定曲线上任意两点的位置,此处所指两点的位置即指某两个截面处的弯矩值。

可见,弯矩图的绘制主要指完成以下两项工作:确定图形特征及特征值;得出某两个截面处的弯矩值。

参考资料来源:百度百科-弯矩图

参考资料来源:百度百科-弯矩

弯矩计算公式取值

ql2/8这个公式里,q如何取值?是恒活荷载乘系数取最大值那一套么?...

ql2/8这个公式里,q如何取值?是恒活荷载乘系数取最大值那一套么?

q是均布荷载值。在结构设计中取各种效应荷载的最不利组合的一组。

连续梁弯矩的计算方法

间距布置1-0.3-1-0.3-1,荷载为均布荷载147.42,求最大弯矩是多少?各位大哥帮帮忙,快点帮我搞一下。最好给个这样形式的公式...

间距布置1-0.3-1-0.3-1,荷载为均布荷载147.42,求最大弯矩是多少?
各位大哥帮帮忙,快点帮我搞一下。
最好给个这样形式的公式

连续梁的弯矩计算是按结构力学的力矩分配法来计算,是种方法不是公式,结构力学专门拿出一章来讲解这,有图形,有公式,有传导路线,实在我没法在这说明,还是看看书为好。

要是想偷懒,就当简支算,M=1/8QL2(是平方),所以最大的弯矩估计就是147.42*1*1/8=18.475

弯矩计算公式一览表

弯矩是受力构件截面上的内力矩的一种。通俗的说法:弯矩是一种力矩。另一种解释说法,就是弯曲所需要的力矩,下部受拉为正(上部受压),上部受拉为负(下部受压)。它的标准定义为:与横截面垂直的分布内力系的合力偶矩。 计算公式M=θ·EI/L,θ转角,EI转动刚度,L杆件的有效计算长度。

大家都在看

最新资讯

推荐专题

儿童歌曲大全 儿童故事大全 卡农钢琴曲谱 天空之城钢琴曲谱 梦中的婚礼钢琴曲谱 梁祝》钢琴曲谱 童年的回忆钢琴曲谱 彩云追月钢琴曲谱 康定情歌钢琴曲谱 水边的阿狄丽娜钢琴曲谱 渔舟唱晚古筝曲谱 云水禅心古筝曲谱 高山流水古筝曲谱 浏阳河古筝曲谱 南泥湾古筝曲谱 梅花三弄古筝曲谱 笑傲江湖古筝曲谱 青花瓷古筝曲谱 月光下的凤尾竹葫芦丝曲谱 婚誓葫芦丝曲谱 荷塘月色葫芦丝曲谱 映山红葫芦丝简谱 军港之夜葫芦丝简谱 青花瓷葫芦丝简谱 蝴蝶泉边葫芦丝曲谱 美丽的神话葫芦丝曲谱 致爱丽丝电子琴谱 小苹果 电子琴谱 天空之城 电子琴谱 婚礼进行曲 电子琴谱 茉莉花 电子琴谱 红河谷曲谱