曲谱网 > 知识库 >

导航导航

一元二次方程怎么解

发布日期:2019-12-03 21:59:00编辑:音乐人

曲谱自学网今天精心准备的是《一元二次方程怎么解》,下面是详解!

在一元二次方程中,当求根公式等于0时(b²-4ac...

在一元二次方程中,当求根公式等于0时(b²-4ac=0),方程应该怎么解举个例子:x²+2x+1=0过程详细一点...

在一元二次方程中,当求根公式等于0时(b²-4ac=0),方程应该怎么解举个例子:x²+2x+1=0 过程详细一点

b²-4ac=0时代表方程有两个相等的实数根。

利用一元二次方程根的判别式(  )可以判断方程的根的情况 。

一元二次方程  的根与根的判别式 有如下关系: 

①当  时,方程有两个不相等的实数根;

②当  时,方程有两个相等的实数根;

③当  时,方程无实数根,但有2个共轭复根。

上述结论反过来也成立。

扩展资料:

求根公式:

用求根公式法解一元二次方程的一般步骤为:

①把方程化成一般形式  ,确定  的值(注意符号);

②求出判别式  的值,判断根的情况;

③在  

(注:此处△读“德尔塔”)的前提下,把  的值代入公式  进行计算,求出方程的根  。

注意:一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式:  ,应该理解为“如果存在的话,两个自乘后为的数当中任何一个”。在某些数域中,有些数值没有平方根。

一元二次方程成立必须同时满足三个条件:

①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

②只含有一个未知数;

③未知数项的最高次数是2。

参考资料:百度百科---一元二次方程

一元二次方程怎么解?要通用的

求解方法
开平方法
(1)形如 或 的一元二次方程可采用直接开平方法解一元二次方程 [5] [6] 。
(2)如果方程化成 的形式,那么可得 。
(3)如果方程能化成 的形式,那么 ,进而得出方程的根。
(4)注意:
①等号左边是一个数的平方的形式而等号右边是一个常数。
②降次的实质是由一个一元二次方程转化为两个一元一次方程。
③方法是根据平方根的意义开平方。
配方法
将一元二次方程配成 的形式,再利用直接开平方法求解的方法[6] [5] 。
图1配方法解一元二次方程实例
(1)用配方法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
(2)配方法的理论依据是完全平方公式
(3)配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。
求根公式
(1)用求根公式法解一元二次方程的一般步骤为:
图 求根公式推导
①把方程化成一般形式 ,确定 的值(注意符号);
②求出判别式 的值,判断根的情况;
③在 (注:此处△读“德尔塔”)的前提下,把 的值代入公式 进行计算,求出方程的根[5] [6] 。
(2)推导过程
一元二次方程的推导如右图2。
注意:一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式: ,应该理解为“如果存在的话,两个自乘后为的数当中任何一个”。在某些数域中,有些数值没有平方根。
因式分解
因式分解法即利用因式分解求出方程的解的方法[5] [5] 。
图3因式分解法举例
因式分解法解一元二次方程的一般步骤如下:
①移项,使方程的右边化为零;
②将方程的左边转化为两个一元一次方程的乘积;
③令每个因式分别为零
④括号中 ,它们的解就都是原方程的解。
图像解法
(1)一元二次方程 的根的几何意义是二次函数 的图像(为一条抛物线)与 轴交点的 坐标。
图4图像法解方程
当 时,则该函数与 轴相交(有两个交点);
当 时,则该函数与 轴相切(有且仅有一个交点);
当 时,则该函数与轴 相离(没有交点)。
(2)另外一种解法是把一元二次方程 化为: 的形式。则方程的根,就是函数 和 交点的 坐标。通过作图,可以得到一元二次方程根的近似值[5] 。
计算机法
在使用计算机解一元二次方程时,和人手工计算类似,大部分情况下也是根据求根公式来求解,即:
可以进行符号运算的程序,如软件Mathematica,可以给出根的解析表达式,而大部分程序则只会给出数值解(但亦有部分显示平方根及虚数的情况)[1] 。

一元二次方程万能公式多少

一元二次方程ax^2+bx+c=0的万能公式x=(-b±√(b^2-4ac))/2a。

解:对于一元二次方程ax^2+bx+c=0(a≠0),可以进行化简得,

x^2+b/a*x+c/a=0

x^2+2*b/2a*x+(b/a)^2-(b/2a)^2+c/a=0

(x+b/2a)^2=(b/2a)^2-c/a

即(x+b/2a)^2=(b^2-4ac)/a^2

那么可解得x+b/2a=√(b^2-4ac))/2a,或者x+b/2a=-√(b^2-4ac))/2a。

那么x=(-b+√(b^2-4ac))/2a,或者x=(-b-√(b^2-4ac))/2a。

所以一元二次方程的万能解公式为x=(-b±√(b^2-4ac))/2a。

扩展资料:

二次函数性质

对于二次函数y=ax^2+bx+c(其中a≠0)。有如下性质。

1、二次函数的图像是抛物线。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形。对称轴为直线x=-b/(2a)。

2、二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。

3、抛物线与x轴交点个数

(1)当△=b^2-4ac>0时,抛物线与x轴有2个交点。

(2)当△=b^2-4ac=1时,抛物线与x轴有1个交点。

(3) 当△=b^2-4ac<0时,抛物线与x轴没有交点。

参考资料来源:百度百科-一元二次方程

解一元二次方程的方法有几种

有三种方法:
一、配方法
二、因式分解法
三、公式法
举例如下:
x²-4x+3=0
方法一:
(x-2)²-4+3=0
(x-2)²-1=0
(x-2)²=1
x-2=±1
x1=3
x2=1
方法二:
(x-1)(x-3)=0
x1=1
x2=3
方法三:
x=[4±√(-4)²-4×3]/2
x=(4±2)/2
x1=3
x2=1

一元二次方程一般有几个解

一元二次方程一般有2个解。

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

一元二次方程有且仅有两个根(重根按重数计算)。

扩展资料:

一元二次方程解法:

一、直接开平方法

形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。方程无实数根。

二、配方法

1.二次项系数化为1

2.移项,左边为二次项和一次项,右边为常数项。

3.配方,两边都加上一次项系数一半的平方,化成(x=a)^2=b的形式。

4.利用直接开平方法求出方程的解。

三、公式法

现将方程整理成:ax^2+bx+c=0的一般形式。再将abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大于或等于0)即可。

四、因式分解法

如果一元二次方程ax^2+bx+c=0中等号左边的代数式容易分解,那么优先选用因式分解法。

C语言,求一元二次方程的解

对于如下的一元二次方程:

ax*x+bx+c=0

设计C语言程序,输入一元二次方程的三个系数a、b、c,求解出该方程的两个根,并且允许用户在程序中多次输入不同的系数,以求解不同的一元二次方程的解。

编程思路分析:

对于该方程,令delta=b^2-4*a*c,从数学的角度来讲,我们需要根据delta的值来判断该方程的根情况:

当delta>=0时,其两个根为实数解,分别为(-b+sqrt(delta))/(2*a)和(-b-sqrt(delta))/(2*a);

当delta<0时,其两个根为复数解,实部皆为-b/(2*a),虚部分别为sqrt(-delta)/(2*a)和-sqrt(-delta)/(2*a)。

其中,sqrt(delta)代表对delta作开根号运算。

在代码设计中,可定义一个结构体Complex存储该方程的根,在该结构体中包括实部和虚部两个变
在程序中,定义两个Complex类型的根x1和x2,当delta>=0时,两个根的虚部为0,否则,分别求解两个根的虚部值。
具体编程如下:

#include "stdio.h" 
#include "math.h" 
/*求一元二次方程ax*x+bx+c=0的解*/ 
main() 
{float a,b,c,x1,x2,d;
printf("请输入a:");
scanf("%f",&a);
printf("请输入b:");
scanf("%f",&b);
printf("请输入c:");
scanf("%f",&c);
d=b*b-4*a*c;if(d < 0)
printf("方程没有实数解。\n");
if (d==0){x1=(-b)/(2*a);
printf("x1=%f\n",x1);}
if (d>0){x1=(-b+sqrt(d))/(2*a);
x2=(-b-sqrt(d))/(2*a);
printf("x1=%f,x2=%f\n",x1,x2);} }
请输入a:12
请输入b:34
请输入c:4
x1=-0.122985,x2=-2.710348
Press any key to continue

扩展资料:

一元二次方程还可以用迭代法的思想设计程序:

例  :一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只?

分析:这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有

u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,……

根据这个规律,可以归纳出下面的递推公式:u n = u(n - 1)× 2 (n ≥ 2),对应 u n 和 u(n - 1),定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:

y=x*2,x=y

让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下:

cls  x=1   for i=2 to 12

y=x*2   x=y

next i   print y

end

迭代法是一类利用递推公式或循环算法通过构造序列来求问题近似解的方法。例如,对非线性方程  ,利用递推关系式,从  开始依次计算  ,来逼近方程的根  的方法,

若  仅与  有关,即  ,则称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组  ,由关系  从  开始依次计算  来过近方程  的解的方法。

若对某一正整数  ,当  时,  与 k 无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。称所构造的序列  为迭代序列。

参考资料:迭代法_百度百科

配方法解一元二次方程的一般步骤是什么?

用配方法解一元二次方程的步骤:

①把原方程化为一般形式;

②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;

③方程两边同时加上一次项系数一半的平方;

④把左边配成一个完全平方式,右边化为一个常数;

⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

扩展资料:

配方法的其他运用:求最值。示例说明如下:

已知实数x,y满足x²+3x+y-3=0,则x+y的最大值为____。

分析:将y用含x的式子来表示,再代入(x+y)求值。

解:x²+3x+y-3=0<=>y=3-3x-x²。

代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。

由于(x+1)²≥0,故4-(x+1)²≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4。

参考资料:百度百科-一元二次方程

一元二次方程 当只有一个实数根是什么情况

一元二次方程 当只有一个实数根是:b²-4ac等于零。

一元二次方程ax^2+bx+c=0(a不等于0),Δ=b²-4ac。

(1)Δ<0时,方程无实数解。

(2)Δ>0时,方程有两个实数解。

(3)Δ=0时,方程有一个解。

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫一元二次方程 。

一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

扩展资料:

一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根) 。

(2)由代数基本定理,一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式(Δ=b²-4ac)决定。

参考资料:百度百科-一元二次方程

一元二次方程的两个根是怎么解出来的?

一元二次方程的两个根可以通过因式分解法和十字相乘法解出。

1、因式分解法:又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。

用因式分解法解一元二次方程的步骤:

(1)将方程右边化为0;

(2)将方程左边分解为两个一次式的积;

(3)令这两个一次式分别为0,得到两个一元一次方程;

(4)解这两个一元一次方程,它们的解就是原方程的解。

举例如:解方程:x²+2x+1=0

解:利用完全平方公式因式解得:(x+1)²=0

解得:x=-1

2、十字相乘法:x的平方+(p+q)x+pq=(x+p)(x+q)

例:ab+b²+a-b- 2

=ab+a+b²-b-2

=a(b+1)+(b-2)(b+1)

=(b+1)(a+b-2)

求根公式:首先要通过Δ=b²-4ac的根的判别式来判断一元二次方程有几个根:

(1)当Δ=b²-4ac<0时 x无实数根(初中)。

(2)当Δ=b²-4ac=0时 x有两个相同的实数根 即x1=x2。

(3)当Δ=b²-4ac>0时 x有两个不相同的实数根。

当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b²-4ac)}/2a来求得方程的根。

扩展资料:

一元二次方程根的判别式。

1、一元二次方程ax²+bx+c=0(a≠0)的根的判别式定理:

在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²­4ac

若△>0则方程有两个不相等的实数根。

若△=0则方程有两个相等的实数根。

若△<0则方程没有实数根。

2、这个定理的逆命题也成立,即有如下的逆定理:

在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²­4ac。

若方程有两个不相等的实数根,则△>0。

若方程有两个相等的实数根,则△=0。

若方程没有实数根,则△<0。

3、如果二次项系数中含有字母,要考虑二次项系数不为零这个限制条件。

怎么解一元二次方程组

首先当a不等于0时方程:ax^2+bx+c=0才是一元二次方程。

1、公式法:Δ=b²-4ac,Δ<0时方程无解,Δ≥0时。

x=【-b±根号下(b²-4ac)】÷2a(Δ=0时x只有一个)

2、配方法:可将方程化为[x-(-b/2a)]²=(b²-4ac)/4a²

可解出:x=【-b±根号下(b²-4ac)】÷2a(公式法就是由此得出的)

3、直接开平方法与配方法相似。

4、因式分解法:核心当然是因式分解了看一下这个方程。

(Ax+C)(Bx+D)=0,展开得ABx²+(AD+BC)+CD=0与一元二次方程ax^2+bx+c=0对比得a=AB,b=AD+BC,c=CD。所谓因式分解也只不过是找到A,B,C,D这四个数而已。

扩展资料:

一元二次方程成立必须同时满足三个条件:

①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

②只含有一个未知数;

③未知数项的最高次数是2。

开平方法:

(1)形如  或  的一元二次方程可采用直接开平方法解一元二次方程 [5]  。

(2)如果方程化成  的形式,那么可得  。

(3)如果方程能化成  的形式,那么  ,进而得出方程的根。

(4)注意:

①等号左边是一个数的平方的形式而等号右边是一个常数。

②降次的实质是由一个一元二次方程转化为两个一元一次方程。

③方法是根据平方根的意义开平方。

参考资料来源:百度百科——一元二次方程

一元二次方程怎么解

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程 。一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a≠0)。其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项 。

大家都在看

最新资讯

推荐专题

儿童歌曲大全 儿童故事大全 卡农钢琴曲谱 天空之城钢琴曲谱 梦中的婚礼钢琴曲谱 梁祝》钢琴曲谱 童年的回忆钢琴曲谱 彩云追月钢琴曲谱 康定情歌钢琴曲谱 水边的阿狄丽娜钢琴曲谱 渔舟唱晚古筝曲谱 云水禅心古筝曲谱 高山流水古筝曲谱 浏阳河古筝曲谱 南泥湾古筝曲谱 梅花三弄古筝曲谱 笑傲江湖古筝曲谱 青花瓷古筝曲谱 月光下的凤尾竹葫芦丝曲谱 婚誓葫芦丝曲谱 荷塘月色葫芦丝曲谱 映山红葫芦丝简谱 军港之夜葫芦丝简谱 青花瓷葫芦丝简谱 蝴蝶泉边葫芦丝曲谱 美丽的神话葫芦丝曲谱 致爱丽丝电子琴谱 小苹果 电子琴谱 天空之城 电子琴谱 婚礼进行曲 电子琴谱 茉莉花 电子琴谱 红河谷曲谱