曲谱网 > 知识库 >

导航导航

一元二次方程教学视频

发布日期:2019-09-21 05:32:00编辑:音乐人

曲谱自学网今天精心准备的是《一元二次方程教学视频》,下面是详解!

二次函数,一元二次方程教学视频?

急!!!无病毒的......

急!!! 无病毒的...

解配方法一元二次方程视频短片

视频没有,但方法可以教你:配方法就是把一元二次方程的左边那一项配成完全平方式,就是
(a-b)²和(a+b)²,这两个式子打开后就是a²-2ab+b²和a²+2ab+b²,其中打开后的这两个式子就叫完全平方式,只要左边配成这样就行了,剩下的就是你正数和负数的运算了,因为外面有平方,所以答案就有两个,一般是一正一负,配方法的秘诀就是这个

一元二次方程教师初中面试视频

首先你得清楚这个单元的主题,把内容熟记再根据主题去搜集相关素材来充实你的课堂。开始课堂你可以设计一个有趣的故事或者笑话来吸引同学们然后切入正题。所谓无生就是没有学生的情况下讲此时你要想象下面坐着学生,要拉近师生关系,要有互动和...rbhp

求实际问题与一元二次方程的解法 如果有视频讲解就...

1、增长率问题:较小的数×(1+增长率)^2=较大的数;较大的数×(1-增长率)^2=较小的数

2、面积问题:利用两种不同的算法求图形的面积,一种利用长×宽求,一种利用面积的加减求

3、销售问题:钱多了,卖的少了,可全化为1来解决问题,例如,每增加2元钱,少卖5件商品,可以看成每增加1元,少卖2.5件,这样设未知数是,每增加x元,少卖2.5x件

4、行程问题:记住几个常用公式,相遇问题,相距路程等于两人路程和;追及问题,相距距离等于两人路程差。

5、工程问题:甲乙两人工作总量等于"1".

1、列一元二次方程解应用题的特点

  列一元二次方程解应用题是列一元一次方程解应用题的继续和发展

  从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.

2、列一元二次方程解应用题的一般步骤

  和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.

  (1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;

  (2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;

  (3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键;

  (4)“解”就是求出所列方程的解;

  (5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.

3、数与数字的关系

  两位数=(十位数字)×10+个位数字

  三位数=(百位数字)×100+(十位数字)×10+个位数字

4、翻一番

  翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.

5、增长率问题

  (1)增长率问题的有关公式:

    增长数=基数×增长率

    实际数=基数+增长数

  (2)两次增长,且增长率相等的问题的基本等量关系式为:

    原来的×(1+增长率)增长期数=后来的

  (1)上述相等关系仅适用增长率相同的情形;

  (2)如果是下降率,则上述关系式为:

    原来的×(1-增长率)下降期数=后来的

6、利用一元二次方程解几何图形中的有关计算问题的一般步骤

  (1)整体地、系统地审读题意;

  (2)寻求问题中的等量关系(依据几何图形的性质);

  (3)设未知数,并依据等量关系列出方程;

  (4)正确地求解方程并检验解的合理性;

  (5)写出答案.

7、列方程解应用题的关键

  (1)审题是设未知数、列方程的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;

  (2)设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数.

  列方程解应用题应注意:

  (1)要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;

  (2)由于一元二次方程通常有两个根,为此要根据题意对两根加以检验.即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的根舍去.

二、重难点知识归纳

列一元二次方程解应用题.

三、典型例题剖析

例1、两个连续奇数的积为323,求这两个数.

思路:

  (1)表示两个连续奇数的方法是:①2n+1,2n-1;②2n-1,2n-3;③2n+1,2n+3;…(n表示整数);(2)设元,①设较小的奇数为x,则另一个奇数为x+2;②设较小的奇数为x-1,则另一个奇数为x+1;③设较小的奇数为2n-1,则另一个奇数为2n+1.

解法1:

  设较小的奇数为x,另一个为x+2.

  根据题意将x(x+2)=323 整理后得

  x2+2x-323=0,

  解这个方程得:x1=17,x2=-19,

  由x=17得x+2=19,由x=-19得x+2=-17

  答:这两个数是17,19或者-19,-17.

解法2:

  设这两个奇数为x-1和x+1,

  根据题意可得(x-1)(x+1)=323,整理后

  得x2=324,x=±18

  当x=18时,18-1=17,18+1=19

  x=-18时,-18-1=-19,-18+1=-17

  答:两个奇数分别是17,19或者-19,-17.

解法3:

  设较小的奇数为2x-1,较大的奇数为2x+1

  根据题意得(2x-1)(2x+1)=323

  整理后得x2=81

  解得x1=9,x2=-9.

  当x1=9时,这两个数是17,19.

  当x2=-9时,这两个数是-19,-17.

  答:两个奇数分别为17、19或-19、-17.

总结:

  对于一些数学问题,若能根据题目的基本特征和特殊因素,进行多角度的观察,分析联想,便可发现多种思维通路,得到多种不同的解法,使之妙趣横生,令人大开眼界.巧设元就是如此,三种不同的设元,列出三种不同的方程,得出不同的x的值,结果“殊途同归”.比较一下,哪种方法最优.

例2、一个两位数,个位数字与十位数字之和为5,把个位数字与十位数字对调后,所得的两位数与原来的两位数的乘积为736,求原来的两位数.

思路:

  数与数字之间的关系是:两位数=(十位数字)×10+(个位数字)

  解题的关键是正确地写出原来的两位数与对调后的两位数,为了便于分析,可列出下表:

    十位数字   个位数字   两位数   

原来的   x   5-x   10x+(5-x)   

对调后的   5-x   x   10(5-x)+x   

解:

  设原两位数的十位数字为x,则个位数字为(5-x),根据题意得

  [10x+(5-x)][10(5-x)+x]=736

  整理得x2-5x+6=0

  解这个方程得x1=2,x2=3

  当x=2时,5-x=3,两位数为23;

  当x=3时,5-x=2,两位数为32.

  总结:(1)对于多位数问题要善于用各数位上的数字来表示该多位数;

  (2)求出方程的解之后,要善于检验它们是否符合题意,不要漏解,更不能保留不合题意的解.

例3、在一次象棋比赛中,实行单循环赛制(即每个选手都与其他选手比赛一局),每局赢者记2分,负者记0分,如果平局,两个选手各记1分,今有4个同学统计了比赛中全部选手的得分总和,结果分别为2005、2004、2070、2008,经核实确定只有一位同学统计无误,试计算这次比赛中共有多少名选手参赛.

思路:

  (1)先分析比赛的总局数,假设此次比赛共有x名选手参赛,则共比赛局;

  (2)再分析得分总和的特征,由于无论胜、负、平每一局比赛都记2分,则比赛局的得分总和就是全部参赛选手的得分总和.即x(x-1)分,又x必为正整数,因此x与x-1是两个连续自然数的积,必为偶数,因此2005分属统计错误,其次两个自然数的积的个位数只可能是0,2,6.因此得分总和不可能是2004,2008,由条件知得分总和只可能是2070.

解:

  设共有x(x为正整数)名选手参赛,所以共计有局比赛.因为每局比赛共记2分,所以全部选手的得分总和为x(x-1)分,由于相邻两个自然数之积是偶数,且其个位数字只能是0,2,6,故总得分不能为2005,2004,2008,所以可得方程x(x-1)=2070.

  解这个方程得x1=46,x2=-45(不合题意舍去)

  答:这次比赛共有46名选手参赛.

总结:

  (1)分析所有参赛选手的得分总和是解本题的关键;

  (2)正确选取合适的数据是解决本题的难点,这就需要多了解整数的基本特征.

例4、某商厦今年一月份销售额为60万元,二月份由于经营不善,销售额下降了10%,以后改进管理,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)

思路:

  这是一个增长率问题,先求出二月份的销售额,再设三、四月份平均增长率为x,表示四月份的销售额.

解:

  设三、四月份平均每月增长率为x,依题意得

  60(1-10%)(1+x)2=96.

  解得.

  由于增长的百分率不能为负数,故不合题意,舍去.

  即.

  答:商厦三、四月份平均每月销售额增长率为33.3%.

总结:

  增长率的基本公式为:a(1±x)n,其中a为基数,x为增长率或降低率,n表示经过几个月的月数.

例5、截至目前,我国退耕还林工程试点扩大到20个省、市、区,具体情况如下表:(单位:万公顷)

基本情况   造林绿化面积   退耕还林面积   宜林荒山荒地造林面积   

2002年完成   88.50   38.89   48.61   

2003年新增       227   266   

(1)将上表补充完整;

(2)若2005年新增造林绿化面积比2003年新增造林绿化面积翻两番,2004、2005两年的平均增长率相同,求这个增长率.

思路:

  由表可知:造林绿化面积=退耕还林面积+宜林荒山荒地造林面积.2005年新增造林绿化面积比2003年新增造林绿化面积翻两番即为4倍,可列方程求解.

解:

  (1)表中数据为493;

  (2)设这个增长率为x,依题意有

    493(1+x)2=493×4

    解这个方程,得x1=1,x2=-3(不合题意舍去).

    ∴x=1=100%.

  答:这个增长率为100%.

总结:

  正确理解翻两番的含义是解题的关键,应在日常生活中多接触类似术语,理解其含义.

例6、取一块长80cm的矩形白铁皮,在它的四个角上截四个大小相同的正方形后,把四边折起来,做成一个没有盖子的长方体盒子,如果做成底面积为1500cm2的长方体盒子,截下的小正方形的边长是多少厘米?

思路:

  设截下的小正方形的边长为x cm,则折成的没有盖子的长方体盒子的底面的长为(80-2x)cm,宽为(60-2x)cm,则可得方程.

解:

  设截下的小正方形的边长为x cm,依题意得

    (80-2x)(60-2x)=1500

    整理得x2-70x+825=0

    解得x1=15,x2=55

    但当x=55时,80-2x=-30,不合题意,舍去.

    ∴x=15.

  答:截下的小正方形的边长为15cm.

总结:

  (1)解决有关面积问题时,要注意将不规则图形分割成或组合成规则图形,找出各部分面积之间的关系,再利用规则图形的面积公式列出方程;

  (2)利用一元二次方程解决实际问题时要对解进行检验,有时一元二次方程的解不一定符合题意.

例7、如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向D移动.

问:(1)P,Q两点从出发开始几秒时,四边形PBCQ的面积是33cm2?

  (2)P,Q两点从出发开始到几秒时,点P点Q间的距离是10cm?

 

思路:

  (1)由于四边形PBCQ为梯形,且高CB=6cm,于是只需表示出上、下底边长即可列出方程;

  (2)由于PQ两点间的距离,不易用未知数的代数式表示,需通过作辅助线构造基本几何图形——直角三角形,利用勾股定理列方程求解.

解:

  (1)设P,Q两点从出发开始x秒时,四边形PBCQ的面积是33cm2,则AP=3x,PB=16-3x,CQ=2x.由梯形的面积公式得,解得x=5.

  答:P,Q两点从出发开始5秒时,四边形PBCQ的面积为33cm2;

 

  (2)设P,Q两点从出发开始到y秒时,点P,点Q间的距离为10cm.

  如图,过点Q作QH⊥AB,交AB于H,则AP=3y,CQ=2y,PH=16-3y-2y,根据勾股定理,得(16-3y-2y)2=102-62,化简方程得25y2-160y+192=0,解得.

  答:P,Q两点从出发开始到时,点P点Q的距离是10cm.

例8、某商场销售一种名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?

思路:

  每降价1元,则每件盈利(40-1)元,每天可售出(20+2)件.故若设每件衬衫应降价x元,则每件盈利(40-x)元,每天售出(20+2x)件,再根据总盈利=每件的盈利×售出的件数.可列出方程求解.

解:

  设每件应降价x元,则每件盈利(40-x)元,每天可售出(20+2x)件,根据题意可列方程

  (40-x)(20+2x)=1200

  整理得x2-30x+200=0

  解得x1=10,x2=20

  因为要尽量减少库存,在获利相同的情况下,降价越多,销售越快,故每件应降价20元.

  答:每件衬衫应降价20元.

总结:

  尽量减少库存是本题方程的根必须适合的题意.两根比较不难得出适合题意的一个,但“尽快减少库存”这一要求在审题中很容易被漏掉,从而导致错误,请注意,另外本题中每件衬衫降价x元.即是每件盈利减少x元.因此在解应用题应认真审清题意,是正确解题的关键.

例9、汽车在行驶过程中由于惯性作用,刹车后还要向前滑行一段距离才能停住.我们称这段距离为刹车距离,在一个限速为35km/h以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相撞了,事后现场测得甲车的刹车距离为12m,乙车的刹车距离为10m,已知甲车的刹车距离S甲(m)与车速x(km/h)之间的关系是:S甲=0.1x+0.01x2,乙车的刹车距离S乙(m)与车速x(km/h)之间的关系是:S乙=0.05x+0.005x2,请你从两车速度方面分析事故原因.

思路:

  要求从两车速度方面分析事故原因,就必须从已知的两车的刹车距离计算出在经过这段弯道上时的速度是否超过警示速度,从而断定事故的主要责任者,而已知条件中两车的刹车距离分别为12m和10m,以及两个关系式,通过解方程求出车速,并作出判断.

解:

  ∵甲车的刹车距离为12m,∴0.01x2+0.1x=12

  即x2+10x-1200=0

  解得x1=30,x2=-40

  由于速度不能为负数,∴x2=-40不合题意,舍去.

  所以甲车的速度为30km/h,不超过限速.

  对于乙车则有0.05x+0.005x2=10

  解这个方程得x1=40,x2=-50(不合题意,舍去).

  所以乙车的速度为40km/h超过了限速35km/h的规定.

找解一元二次方程分解因式十字相乘的教学视频 还有...

不用视频你帮我讲清楚也可以我会给你高分的...

不用视频 你帮我讲清楚也可以 我会给你高分的

求九年级上册数学的一元二次方程的教学视频

内容:一元二次配方法、一元二次公式法、一元二次分解因式法、一元二次应用!!视频可以发网址,但是一定要发看得到的。或者发邮件(推荐!!)hyhymk@126.com!谢谢了,好的有加分!...

内容:一元二次配方法、一元二次公式法、一元二次分解因式法、一元二次应用!!视频可以发网址,但是一定要发看得到的。或者发邮件(推荐!!)hyhymk@126.com!谢谢了,好的有加分!! 展开

一元二次方程过程

要过程...

要过程

三种方法都写了。如果实在不会你可以记住公式法这一种方法,把求根公式记住,只要是一元二次方程都能用公式法求

快速学习解一元二次方程

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。标准形式:ax²+bx+c=0(a≠0)
一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。
配方法:首先将二次项系数a化为1,然后把常数项移到等号的右边,最后在等号两边同时加上一次项系数绝对值一半的平方,左边配成完全平方式,再开方就得解了。
公式法可以解任何一元二次方程。
因式分解法,必须要把所有的项移到等号左边,并且等号左边能够分解因式,使等号右边化为0。
除此之外,还有图像解法和计算机法。

一元二次方程的根与系数的关系小邵老师视频

一元二次方程的根与系数的关系小邵老师视频...

一元二次方程的根与系数的关系小邵老师视频

对于一元二次方程ax^2+bx+c=0,当判别式△=b^2-4ac≥0时,其求根公式为:x={-b±√(b^2±4ac)}/2a ;若两根为X1、X2,当△≥0时,则两根的关系为:X1+X2= -b/a,X1·X2=c/a(也称韦达定理,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,。

解一元二次方程需要先学习什么

要先学根号?...

要先学根号?

根号的基本定义和性质;因式分解和完全平方公式,代数式的化简和转化,会画函数的基本图像和图像的转化;对一元二次方程来讲,要知道定义,要知道判别式,要知道顶点坐标,要知道如何画图,,要知道两个根的和,积与系数的关系。最后要知道,一元二次方程是二次函数的特殊情况。以便为二次函数学习做准备

一元二次方程教学视频

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程 。一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a≠0)。其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项 。

大家都在看

最新资讯

推荐专题

儿童歌曲大全 儿童故事大全 卡农钢琴曲谱 天空之城钢琴曲谱 梦中的婚礼钢琴曲谱 梁祝》钢琴曲谱 童年的回忆钢琴曲谱 彩云追月钢琴曲谱 康定情歌钢琴曲谱 水边的阿狄丽娜钢琴曲谱 渔舟唱晚古筝曲谱 云水禅心古筝曲谱 高山流水古筝曲谱 浏阳河古筝曲谱 南泥湾古筝曲谱 梅花三弄古筝曲谱 笑傲江湖古筝曲谱 青花瓷古筝曲谱 月光下的凤尾竹葫芦丝曲谱 婚誓葫芦丝曲谱 荷塘月色葫芦丝曲谱 映山红葫芦丝简谱 军港之夜葫芦丝简谱 青花瓷葫芦丝简谱 蝴蝶泉边葫芦丝曲谱 美丽的神话葫芦丝曲谱 致爱丽丝电子琴谱 小苹果 电子琴谱 天空之城 电子琴谱 婚礼进行曲 电子琴谱 茉莉花 电子琴谱 红河谷曲谱